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Abstract

Cardiogenic shock (CS) is a severe and frequent complication of acute
myocardial infarction (AMI), necessitating rapid and accurate prognosis as-
sessment to guide treatment and intensive care unit (ICU) resource alloca-
tion. We developed two machine learning models to predict 30-day outcomes
following CS in AMI: an Admission model (using only data available at ad-
mission, like demography, comorbidities) and a Full model (incorporating
additional laboratory values obtained within 24 hours). The models were
trained on the CULPRIT-SHOCK dataset and externally validated using
the eICU database. The Admission model achieved an out-of-sample AUC of
0.71 (95% CI: 0.6-0.83) in the development cohort and 0.68 in the validation
cohort, while the Full model attained significantly higher performance, with
AUCs of 0.80 (95% CI: 0.69-0.9) and 0.78, respectively. The Full model’s
superior performance underscores the prognostic value of early laboratory
trends, suggesting that dynamic data integration improves risk stratifica-
tion. Both models outperformed existing risk scores across multiple metrics,
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provided well-calibrated probabilistic predictions, and demonstrated robust-
ness to missing data. Additionally, they offered patient-level explainability,
enhancing clinical interpretability. While promising, the models’ generaliz-
ability may be influenced by differences between the CULPRIT-SHOCK and
eICU cohorts (e.g., demographics, CS severity thresholds); further validation
in larger, prospective cohorts is warranted.

Keywords: Cardiogenic shock, Machine learning, Intensive care, ICU,
Prognosis prediction
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1. Introduction

Cardiogenic shock (CS) is a syndrome caused by a primary cardiovas-
cular disorder in which inadequate cardiac output can result in multi-organ
dysfunction and death.! The most common cause of CS is acute myocardial
infarction (AMI). The annual incidence of CS is more than 30,000 patients
in the United States and 45,000 in Europe, with a mortality rate close to
50%.%3 Cardiogenic shock is a complex and heterogeneous condition, en-
compassing a wide spectrum of clinical presentations and severities, which
can vary across different patient phenotypes.? To address this variability,
the Society for Cardiovascular Angiography and Interventions (SCAI) has
proposed a standardized classification system that categorizes CS into stages
(A through E) based on clinical and hemodynamic criteria.’ This framework
aims to provide a unified language for describing CS severity, facilitating
consistent communication among clinicians and researchers across diverse
settings. However, while this system provides a valuable descriptive tool, it
does not offer quantitative risk stratification or mortality prediction.

Fast and accurate estimation of a patient’s prognosis can improve treat-
ment and allow for better allocation of the scarce resources in the Inten-
sive Care Unit (ICU). To this end, several risk scores have been proposed,
such as the Intra-Aortic Balloon Pump SHOCK II score (IABP-SHOCK II),°
Simplified Acute Physiology Score (SAPS II),” Shock trial registry score,®
CardShock score,” BOS,MA, score,!? and Cystatin C, Lactate, Interleukin
6, NTproBNP (CLIP) score,!! among others. However, these scores present
two main limitations, impairing their utility in real-world applications. First,
they use laboratory test values, which are not readily available at admission,
limiting their application in real scenarios, as risk assessment is needed as
soon as possible, ideally within minutes after patient admission. Moreover,
some of the scores rely on information that might not be broadly available
at every ICU, like Cystatin C or Interleukin 6. Second, these scores cannot
handle missing values, which are of common occurrence in a clinical set-
ting as data is obtained under critical circumstances, and other problems,
such as laboratory equipment not functioning and misplaced records, may
occur. Therefore, robust models that can make accurate predictions, even
with missing information, are desirable.

Machine learning (ML) models have been used to integrate diverse pa-
tient information to obtain an accurate and fast diagnosis in different clin-
ical scenarios in general,'>!3! and in CS in particular.!>16:17%18 However,
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such models have not yet been explored for the prognosis of CS. An ap-
propriate ML model can assist clinical decision-making by providing several
advantages; (1) prediction at the time of admission can help make decisions
regarding the trajectory of the care given to a patient, (2) providing an uncer-
tainty estimate along with a prediction, (3) handling of missing information,
and (4) patient-level explainability of how the model arrives at a prediction.

ML models are trained using patient information (called features), like
demographics (age, sex), electrocardiogram results (heart rate, sinus rhythm,
atrial fibrillation), and laboratory test results (creatinine, lactate, troponin),
among others. A trained model can predict a newly admitted patient’s char-
acteristics, expressed as a target, for example, the presence of a disease or
the patient’s prognosis. In the training phase, ML models use already ac-
quired and labeled data to automatically adjust their internal parameters to
learn the relationships between the features and the target. When a new
patient arrives, the trained ML model can make a prediction based on the
same features for this new patient.

In a clinical setting, it is important to obtain uncertainty estimates to-
gether with a prediction. Indeed, some classification models can provide
such an output. However, it must be ensured that this output is calibrated,
meaning that the model’s uncertainty estimate refers to the actual likelihood
of an event happening. For instance, the model is correctly calibrated if it
predicts a 70% probability of a patient presenting a disease, and, on average,
70% of the patients predicted with that probability presented the disease. A
well-calibrated model is of vital importance where the decision-making relies
on the model’s output, as miscalibrated models can lead to suboptimal or
harmful treatment decisions.®

In this work, we propose an ML approach that satisfies the aforemen-
tioned criteria. The proposed models were named MACRO (MAchine learn-
ing models for early prognosis prediction in CaRdiogenic shOck). Specifi-
cally, we aimed to develop two models, one that only uses features available
at admission and a second model that uses features typically available within
the first 24 hours after admission. These models were extensively tested for
their accuracy, usefulness in uncertainty estimation, and robustness to miss-
ing values. Finally, we aim to develop an easy-to-use web service that allows
clinicians to use the proposed models for new patients in an intuitive way.
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2. Methods

2.1. Data description

Our study used the CULPRIT-SHOCK dataset,?® a high-quality dataset
of a prospective multi-center trial, to train the proposed models. This dataset
was collected between April 2013 and September 2015 in over one hundred
centers across Europe. The dataset was originally designed to compare a
culprit lesion-only percutaneous coronary intervention (PCI) with an imme-
diate multivessel PCI regarding the primary composite endpoint of 30-day
mortality or renal failure requiring renal replacement therapy. One of the
noteworthy characteristics of this dataset is that the data was validated,
which means that an expert supervised each loaded value. This provides
a high signal-to-noise ratio, a low number of wrongly inputted data, and
high data completeness. The dataset included 686 patients (162 females, age
mean 68 - standard deviation 11 years) (Supplementary Figure 1). Thirty-
day mortality was used as the target, and the dataset presents 361 “Alive”
and 325 “Expired” patients.

Missing values were not imputed, as imputed data might not match the
underlying data distribution and can compromise the interpretability of clas-
sifier models trained using poorly imputed data.?! Additionally, one of the
main assumptions of most common imputation methods, like the Multi-
ple Imputation by Chained Equations (MICE),?? is the Missing at Random
(MAR). This assumption requires that missing values appear randomly in the
data and are not correlated with the target of interest. Imputing the data
when it is not MAR could result in biased estimations.?® In our dataset, this
assumption is not fulfilled, as the “Expired” patients presented a higher per-
centage of missing values in the features, compared with the “Alive” patients
(Supplementary Table 1 and 2, and Supplementary Figure 2).

The eICU dataset?» 2526 was used as a validation cohort. This dataset
presents 139,367 unique patients who were admitted to 335 different ICUs at
208 hospitals located in the United States between 2014 and 2015. In this
dataset, ICU admissions for all causes were collected; therefore, CS patients
only represent a small proportion of the whole dataset. Of the total number
of patients, 10,337 were admitted to a Cardiac ICU. From this cohort, 245
were diagnosed with CS (ICD: 785.51) and were selected as the validation
cohort. According to the dataset information, the cause of CS was myocardial
infarction for 30 patients, therefore, broader CS causes can be expected in
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this dataset. The definition and criteria for defining CS vary across studies,?”
thus other CS cohorts may be extracted from the eICU dataset.

In contrast with the CULPRIT-SHOCK dataset, the eICU dataset was
not validated, meaning that the data registered had no human supervision.
This is especially important for those features derived from the bedside vital
signs monitors, like heart rate, systolic, and diastolic pressure.

For both datasets, written informed consent was obtained at data acqui-
sition time, and only de-identified data was used.

2.2. Admission features

Twenty-five features were selected by two experts due to their availability
at the admission time and potentially containing relevant information about
patients’ prognosis, such as age, height, weight, heart rate, and blood pres-
sure. These features were selected as they are expected to be available in
any [CU setting.

Following the experts’ recommendation, we combined three variables,
“Previous myocardial infarction”, “Previous PCI”, and “Previous CABG
surgery”, into one unified “Known coronary artery disease”. This variable
was set as “True” when at least one of the constituent variables was “True”
and was set to “False” otherwise. From all the admission features, six fea-
tures with a variance less than 0.1 were removed, as the features were almost
constant and provided no information. Removing low variance features helps
reduce the model’s complexity, mitigating overfitting and improving model
explainability.?® This resulted in 19 features for the “Admission” model with
only a few missing values (each feature had, on average, 1.5% of missing val-
ues), as these features are easily accessible (see Supplementary Table 1 for
details).

The selected admission features were also extracted from the eICU
dataset. Values before admission were used for all variables except for heart
rate, systolic, and diastolic blood pressure, for which the information from
the first 30 minutes after admission was used. The median of the avail-
able measurements, after removing biologically implausible values outside
the range from 20 to 200, was computed as the admission value for these fea-
tures. Notably, only 20% of the patients had blood pressure information, and
80% had Heart Rate (HR) information. The extracted features in the eICU
dataset presented a higher number of missing values compared to the features
extracted from the CULPRIT-SHOCK dataset (Supplementary Table 2).


https://doi.org/10.1101/2025.09.18.25336054
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.09.18.25336054; this version posted September 19, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

2.3. 24 hours after admission features

The same two experts also selected another 20 features that are typically
measured in the first 24 hours after admission and may be broadly available
in different ICUs, such as creatinine, lactate, and hematocrit, among others
(Supplementary Table 3). In the CULPRIT-SHOCK dataset, laboratory test
results have a time-stamp, and only the features available within the first 24
hours were used, discarding any information that was collected after that
point. Additionally, since these results were measured in different units at
each site, a unit harmonization was performed. For each feature, the values
were multiplied by a conversion factor depending on the needed unit conver-
sion. For example, white cell counts were harmonized into values between
0.1 and 60 10°/L.

Five features with less than 0.1 variance were eliminated, resulting in a
total of 15 24-hour features. These features had a higher number of missing
values compared to admission features (each feature had, on average, 22%
of missing values). The details of the 34 features used for the Full model,
together with the number of missing values, unit, and variance, are shown in
Supplementary Table 3.

Importantly, 90 patients who expired within the first 24 hours were ex-
cluded from the cohort from which the Full model was trained. This choice
was made to match the training cohort with the patients to whom the model
will be applied, as the Full model is designed to be applied only to patients
who have survived 24 hours after admission. Additionally, the inclusion of
those patients could lead to a biased model as those patients do not have
24 hour lab values. Consequently, a model would learn that if a feature like
“lactate 24hs” is not available, then the patient has expired. If the “lactate
24hs” would not be measured for any other reason for a new patient who
survived the first 24 hours, the model will predict “Expired” as a prognosis
with high likelihood, erroneously influenced by the absence of this feature.

The selected 24-hour features were also extracted from the eICU dataset.
The features were harmonized to match the units for the CULPRIT-SHOCK
dataset, and the values between admission and the first 24 hours were used.
For each feature, if several measurements were acquired in the first 24 hours,
the mean of all the values was computed. The extracted features presented
a much higher number of missing values, compared with the CULPRIT-
SHOCK extracted features (Supplementary Table 4).
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2.4. Rusk scores

The proposed models were compared with four conventional risk scores
calculated in the CULPRIT-SHOCK dataset: CardShock, CLIP, SAPS II,
and IABP-SHOCK II, and with the BOS,MA, score in the eICU dataset. As
all the risk scores needed laboratory values to be calculated, we excluded the
same 90 patients who expired in the first 24 hours for a fair comparison with
the Full model.

The SAPS II and IABP-SHOCK 1I scores are already available in the
CULPRIT-SHOCK database for 541 and 409 patients, respectively. These
scores were not recalculated. It was possible to calculate the CLIP score for
374 patients, following the procedure in.!' It was possible to calculate the
CardShock score for 141 patients of the CULPRIT-SHOCK dataset (patients
who presented information in all the features needed for the score). It was
possible to calculate the BOS,MA, score in 144 of the 245 patients in the
elCU cohort, who presented information in all the features needed to calcu-
late the score. It is important to note that the features and weights used for
the CLIP and the BOS,MA, scores were obtained in a data-driven fashion
using the CULPRIT-SHOCK and eICU datasets used here, respectively.

It was not possible to calculate the BOS,MA,, or other general risk scores,
like the quick Sepsis Related Organ Failure Assessment (qSOFA) score,? in
the CULPRIT-SHOCK dataset, as some of the features that compose the
scores are not available.

The SAPS II score uses 15 features, while CardShock uses 7, IABP-
SHOCK II and BOS,MA, use 6, and the CLIP score uses 4 features. The
details of the features that compose each of the compared risk scores are
presented in Supplementary Tables 5, 6, 7, 8, and 9.

2.5. Machine learning approach

The eXtreme Gradient Boosting (XGBoost)?® was used as it provides a
fast and efficient way to deal with different data types, as clinical data present
a mix of integer (age, heart rate, height, weight), boolean (sex, diabetes mel-
litus, atrial fibrillation) and float values in different ranges (lactate, creatine,
white cell counts). This method has been successfully used to predict CS risk
in ST-elevation myocardial infarction (STEMI) patients'® or early prediction
of CS clinical data.! Another key characteristic of XGBoost is the ability
to deal with missing values,*® and several tools have been proposed to assess
model explainability and feature importance.?!:32:33:34 The proposed models
were trained to predict the 30-day mortality as the target.
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The “Admission” model was trained using the 19 features available at
admission time, while the “Full” model also used 15 features (34 in total)
measured in the first 24 hours after admission. All patients were used for the
Admission model, while the 90 patients who died in the first 24 hours were
removed from the cohort used by the Full model.

To evaluate the performance of the models, stratified cross-validation
(CV) was used. This approach involves dividing the dataset into multiple
subsets, or “folds”, and then training and testing the model multiple times,
each time using a different fold as the test set and the remaining folds as
the training set. In our experiments, the dataset was divided 100 times
using a stratified 10 times repeated 10-fold CV scheme. For each split, we
followed the same workflow to train and evaluate both models (Figure 1).
The stratification in the CV avoids biases by ensuring the same proportion
of Alive and Expired patients in each fold. Hyperparameter tuning was
performed using OPTUNA 3 using slightly stricter hyperparameter ranges
as proposed in*® (Supplementary Table 10). We used 100 OPTUNA trials,
using the default sampler (TPESampler) and a median pruner to eliminate
non-promising trials.3¢

Additionally, to further prevent overfitting typically observed in tree-
based ensemble models, we used early stopping with 100 rounds to obtain
the number of estimators. To that end, the train data was split into in-
ner train and validation data, and the training procedure stopped when no
improvement in a given criterion was achieved on the validation set. The
area under the receiver operating characteristic curve (AUC) was used as the
optimization criterion. This procedure was repeated using an inner 3-fold
stratified CV, and the mean AUC was used for OPTUNA as an optimiza-
tion goal. The hyperparameter combination that achieved the best mean
validation AUC was then used to train a model on the whole training data,
which was then applied to the test data (Figure 1). The model’s probability
output (continuous value between 0 and 1) was transformed to a binary label
(Alive/Expired), using the standard threshold of 0.5.

2.6. Score models

To compare our proposed models with conventional risk scores, we built
one model per score using logistic regression (LG).3” For these models, the
90 patients who expired in the first 24 hours were removed, as all the scores
require laboratory data. This cohort matches the cohort used for the Full
model.
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Each score model takes as input one feature: the SAPS II score, IABP-
SHOCK II score, CardShock, or the CLIP score, and predicts 30-day mor-
tality. The same stratified 10 times repeated 10-fold CV scheme used to
evaluate the proposed models was also used for the score models. In this
case, those patients who had missing information (where the scores were not
calculated or could not be calculated) were removed from the train and test
folds. The BOS,MA; score has a risk probability associated with each of the
possible score values, which was used as model output (Supplementary Table
9).

2.7. Metrics

The balanced accuracy (bACC), sensitivity, specificity, harmonic mean
of the precision and recall (F1), and AUC were computed to extensively
compare the performance of the proposed models and the risk-score-based
models. For each metric, the 95% Confidence Interval (CI) with equal areas
around the median was calculated. The “Expired” class was used as the
positive class. All metric formulas (if applicable) and implementation are
shown in Supplementary Table 11.

2.8. Random permutation test

The random permutation test is a statistical technique commonly used
in ML to assess the significance of a model’s performance by comparing its
classification performance to a distribution of possible outcomes obtained
through random shuffling of the data. This test checks if the model captured
the real feature-target relationship. In our experiments, all the labels were
randomly permuted before splitting the data in train and test, following the
recommendations in.*® The models’ training and hyperparameter search were
performed in the same fashion as in the main experiments, but now using
the shuffled data. Before each CV, the data was shuffled. By repeating this
100 times, we obtained a total of 1000 performance values using randomized
labels.

2.9. Missing values analysis

To systematically study the impact of the missing values, several exper-
iments were performed to understand the models’ behavior with different
amounts of missing information. The ability to make a prediction even when
some of the information is missing is one of the key characteristics of our
model, as this is expected in real clinical settings.
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For this purpose, the Admission model was trained with all available data
as previously described, but some of the test sample features were gradually
removed while age and sex were assumed to be always available.

The same procedure was followed for the Full model, i.e., trained the
model with all available data, but the test sample features were gradually
removed. In this case, all admission features were assumed available to the
model. The feature removal was done in three ways: i) Random scenario:
randomly removing different numbers of features for each patient; ii) Worst
case scenario: Removing the most important features first. For instance,
creatine was removed first, then lactate 8hs, lactate 16hs, and so on; iii)
Best case scenario: The features were removed in the inverse order of their
importance. The importance of the features was obtained using Shapley
Values,?"3? as described in Section 2.11.

2.10. Muissing values baseline

Aiming to quantify the extent the models use the missing value for pre-
dictions, an experiment was conducted using only the missing value patterns.
Here, all available feature values were replaced with 0, and all missing values
were replaced with 1, creating a dataset that contains the missing value pat-
terns and effectively uses only the presence or absence of data as input. This
approach aims to isolate the contribution of missing value patterns to the
models’ predictions, as the models could identify systematic missing value
patterns and use this bias to achieve an accurate prediction.

If the models do not rely on missing value information, their performance
should be at the chance level (AUC = 0.5). This experiment was applied to
both the Admission and Full models, following the same training and evalu-
ation methodology as in the main analysis. The results establish a baseline
performance of the influence of missing values on the models’ predictive per-
formance, which can serve as a comparison to determine to which extent the
missing values could bias the models’ predictions.

2.11. Feature explanation

Not all the features provided to the models carry the same information
about a given patient’s prognosis. Some features are more important than
others, having different impacts on the model’s performance. Moreover,
features for each patient can impact the model’s decision differently; thus,
individual-level explainability is of crucial importance in clinical applications.
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In our study, Shapley Values3!:3? were used to explore the features that

influence the model’s output at the patient level. This method computes
the feature importance for each sample by comparing the model’s prediction
with or without using a particular feature. This contribution, called SHAP
values, is positive or negative depending on whether the feature value pushes
the model’s decision toward Expired or Alive, respectively. In addition to
providing a patient-level explanation for a decision, the averaged absolute
SHAP value across individuals provides a measure of a feature’s importance.
To evaluate redundant features, the hierarchical clustering implemented
in the shap library was used (https://shap.readthedocs.io/en/latest/. Briefly,
the method clusters the features by training XGBoost models to predict
the outcome for each pair of input features. The distance between clusters
represents the similarity between features, where a distance of 0 represents
identical features and a distance of 1 represents independent features.

3. Results

3.1. Models performance

The mean and 95% CI of the 10 repetitions of 10-fold CV obtained on
the CULPRIT-SHOCK, for each metric and model, are presented in Table 1.
Even though the ITABP-SHOCK II score showed good performance in other
cohorts,® the score showed no clear relationship with 30-day mortality in the
CULPRIT-SHOCK dataset (Supplementary Figure 3). The model that used
this score was not able to extract useful information and was biased toward
predicting the samples as Alive, resulting in chance-level balanced accuracy,
specificity 1, and sensitivity 0 (Table 1). We, therefore, excluded this score
from further analysis.

The Admission model, the only model capable of generating a prediction
at admission time without using any laboratory values, correctly predicted
64.6% of the patient’s prognosis (Table 1). Importantly, on average, the
Admission model predicted at “Risk” for 73% of the patients who expired
within the first 24 hours, which is the main goal of this model.

The proposed Full model outperformed all the models in the bACC
(70.7%, compared to 66.3% for the CLIP score and 59.7% for SAPS II)
and obtained an AUC similar to the CLIP score model (0.799) (Figure 2a).
Importantly, the Full model showed a good balance between sensitivity and
specificity, largely outperforming the risk-score-based models in the F1 score.
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The regularization applied to the Full model, even using a restrictive hyper-
parameter range, was not able to completely avoid overfitting, as the model
achieved almost a perfect training performance (Supplementary Table 12).

The permutation test showed that both proposed models’ bACC perfor-
mance was significantly better when trained using actual labels than when
using randomized labels (Mann-Whitney-Wilcoxon test, p < 0.001) (Figure
2b).

The proposed models were well calibrated (Figure 2c). The models pre-
sented slightly biased predictions for probabilities close to 0 or 1. For prob-
abilities close to 0, the actual proportion of positive cases was higher than
predicted, indicating an underestimation. Conversely, for probabilities close
to 1, the actual proportion of positive cases was lower than predicted, indi-
cating an overestimation.

On the validation cohort, extracted from the eICU dataset, both proposed
models obtained a similar classification performance, as the one obtained in
the discovery dataset (Table 2). For the Admission model, the AUC dropped
from 0.712 to 0.68, while for the Full model, the AUC dropped from 0.799 to
0.777. This small drop in performance supports the robust cross-validation
scheme used. The BOS,MA, score obtained a better AUC of 0.82 compared
with the proposed models and similar to the one reported in the original
paper. This is expected, as this score was developed in a data-driven fashion
using the eICU dataset. Notably, the Admission model obtained a better F1
score (0.52), compared with the Full model (0.49) and the BOS,MA, (0.32).

3.2. Missing values analysis

Regarding the Admission model, in the worst-case scenario a steep perfor-
mance drop was observed when removing dyslipidemia, the most relevant fea-
ture after age (Figure 3a). The performance continued dropping and reached
chance-level performance when the 9 most relevant features were missing.
On the other hand, the model was able to maintain a high performance
when 8 features were missing in the best-case scenario. In the random sce-
nario, the performance showed a smoother decline and reached chance-level
performance when 9 features were removed.

In the case of the Full model, a similar behavior to the above-described
was observed (Figure 3b). However, this model never reached the chance
level, as all the admission features were still available. When the top 4 most
informative features were presented (creatine, lactate 16hs, NTproB), the
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model obtained a similar performance as when all the features were pre-
sented (Figure 3b - Best-case scenario with 12 removed features). For the
random scenario, the performance after removing 6 features was lower than
the Worst-case scenario. This could be due to features that presented higher
importance, also encoding similar information. When randomly removing
features, different information available to the model was removed, which
could lead to stronger detrimental performance.

3.3. Missing values baseline

Finally, the Admission and Full models, which were trained using real
data, achieved significantly higher AUC scores compared to the models
trained using the missing values baseline approach, where missing values
were replaced with 1 and real data with 0 (Table 1). The baseline models
using missing values yielded AUC scores close to 0.5, indicating classification
performance near chance level. The substantial difference in AUC between
the real models and the missing values baseline models confirms that classi-
fication performance relies on the actual data rather than the distribution of
missing values.

3.4. Feature importance

For the Admission model, the most important features, calculated as
average absolute SHAP values across patients, were age, dyslipidemia, heart
rate, and diastolic blood pressure, while the lowest 8 features had a low
impact on the model’s output (Figure 4a).

For the Full model, the lactate values measured at different time points
were the most important features, along with creatine, age, and NT proB
(Figure 4c). This result corroborates the CLIP score, which, in a data-driven
approach, arrived at similar features using the same dataset. The laboratory
values obtained in the 24 hours provide valuable information that the Full
model used. Even though age remains a relevant variable, it had a greater
influence on the models’ output compared to other laboratory values.

The low impact of some features can be related to the redundancy in
the information provided by different features. In essence, the presence of
multiple features with overlapping could make the SHAP values of one of
them lower. For the Admission model, dyslipidemia is highly correlated with
hypertension, but the latter is almost not used by the model. This is also
the case for dyslipidemia, diabetes mellitus, and known peripheral artery
disease (Supplementary Figure 4). Additionally, other features formed close

14


https://doi.org/10.1101/2025.09.18.25336054
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.09.18.25336054; this version posted September 19, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

clusters: diastolic and systolic blood pressure, atrial fibrillation and sinus
rhythm, and sex, height, and weight. For the Full model, an expected cluster
of lactate values was found. Also, the laboratory values ALAT, INR, and
NTproB presented shared information (Supplementary Figure 5). Having
redundant information helps maintain the model’s performance even when
some features are missing, making the model more robust in the absence of
specific variables.

3.5. Patient-level explainability

An important aspect of employing ML models in clinical domains is
patient-wise explainability, providing a better understanding of how the
model arrives at a particular decision. Our model can indeed provide the
impact of each feature on each decision.

We assessed the patient-level explainability using the SHAP values “wa-
terfall” plot depicting how the value of each feature contributes to a specific
decision for a given patient. For a randomly picked Alive patient, for whom
the Admission model correctly classified as Alive, the most important feature
that influenced the model to predict the patient as Alive is the age of 41.
The rest of the features had a small or no impact on the model’s decision
(Figure 5a).

On the other hand, for an Expired patient whom the Admission model
successfully classified, age did not play a determinant role in the model’s
decision, but rather the Diastolic blood pressure of 50, the absence of dys-
lipidemia, and absence of Sinus rhythm pushed the model’s decision (Figure
5b).

These two cases exemplify how a clinician can transparently analyze the
model’s decision and take this information into account for making a more
informed decision.

3.6. Web Service

We provide a Web Service demo that can be accessed at: (can’t be pro-
vided by double blind). This demo can be publicly accessed and aims to show
how clinicians can use the proposed models in a fully functional version. Sim-
ulated patients can be loaded in the demo and predictions can be made using
both proposed models. Additionally, a patient-wise plot can be obtained for
each patient, aiding the interpretation of the output of the model. The demo
is designed to showcase the tool’s capabilities while considering legal and
privacy concerns associated with decision-making tools in clinical scenarios.
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In the EU Artificial Intelligence Act, medical decision-making might be clas-
sified as a high-risk application. Therefore, the demo is limited to loading
“fake” patient data and does not include the functionality to input values
manually.

The fully functional version will allow to input data through manual entry,
entailing the completion of the feature values, or via uploading a single .csv
file. Most of the features in the Admission model are binary (yes or no), sig-
nificantly speeding up data entry. Only six numerical variables—age, height,
weight, heart rate, systolic and diastolic blood pressure—are used. This min-
imizes the time required for data entry, facilitating rapid risk stratification
even in urgent clinical scenarios. For the Full model, as the 19 admissions
features will already be loaded, only the top 4 most informative features (cre-
atine, lactate 16hs, NTproB, and lactate 8hs) need to be input into the model
to obtain a similar performance as when all the features are presented. The
Web Service automatically validates all features, issuing warnings if a feature
is not in its biologically plausible range, mitigating human errors during data
input.

4. Discussion

ML has gained importance in the field of medicine in the last few years,
though studies implementing ML in critically ill patients remain limited.
Recently, ML models and other innovative phenotyping technologies have
been successfully applied to different cohorts of CS patients,'>1%4 in ad-
dition to several risk scores.®7 111989 YWe developed two models, called
MACRO models, the Admission model using only admission data, and the
Full model using additional laboratory values available within 24 hours. We
demonstrated that the proposed ML models can predict a new patient’s prog-
nosis after CS following AMI using a dataset from a large multicentre trial
(CULPRIT-SHOCK) and were validated using an external dataset (eICU).
Compared to established prognostic scores in CS, the MACRO models are
characterized by superior predictive performance. Furthermore, both models
fulfill several desired criteria important for clinical application, as they can
handle missing information, provide (un)certainty estimates, and provide in-
sights with patient-level explainability. In summary, the proposed MACRO
ML models in CS represent strong tools for outcome prediction that allow
decision support concerning the potential prognosis of a patient, as early as
admission.
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The Admission model is the only model able to provide predictions at the
patients’ admission, gaining crucial time in the CS treatment. This model
uses 19 features broadly available in any ICU at the admission time, like age,
heart rate, and comorbidities. This model obtained a cross-validation AUC of
0.71 in the CULPRIT-SHOCK (developing cohort) and demonstrated a good
generalization performance, obtaining an AUC of 0.68 on the eICU dataset
(external validation cohort). A key strength of this model is that it was able
to correctly classify 73% of the “Risk” patients that expired in the first 24
hours. These particular patients are the main goal for the Admission model,
as after the first 24hs, the Full model can be applied. Rapidly and accurately
labeling a patient at risk can result in better surveillance (e.g. extensive
laboratory assessment in shorter time windows), optimizing diagnostics, and
evaluating treatment strategies. This model can be potentially valuable to
better inform patients and relatives.

Laboratory values are typically used to identify CS and are commonly
acquired in a wide range of ICUs, such as lactate, creatinine, and N'T-proB.
However, some laboratory tests, like Interleukin-6 or Cystatin C, are not
broadly available. Conventional risk scores use this laboratory test, which
can hinder its use in broad scenarios. To overcome this limitation, the pro-
posed Full model relies on broadly available laboratory tests, making this
model suitable for a broad range of hospitals, as no expensive or specialized
equipment is needed to obtain the used features. This model outperformed
all other models compared here and was able to maintain its performance
even with a large number of missing values. The model achieved a high clas-
sification performance (AUC of 0.799 and bACC of 71%) when the 5 most
important features, besides the admission features, were available. Using the
external validation cohort extracted from the elCU dataset, we demonstrated
that the Full model obtained a similar performance (AUC: 0.777) compared
to the one achieved on the CULPRIT-SHOCK dataset.

Both models showed good calibration and delivered predictions that could
be correlated with the frequency of an event occurring, which facilitates
and improves the output’s interpretation. However, clinicians and decision-
makers should interpret predictions and associated confidence values with
caution, especially when the probabilities are close to 0 or 1.

The range of features included in our models allows for flexibility and ro-
bustness in generating accurate predictions, even in cases when some features
are missing. This trade-off between the number of features and the model’s
ability to handle missing values is crucial. A model with too few features
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might fail to manage missing data effectively, whereas a model requiring too
many features could be impractical for real-time clinical applications. In that
regard, the model’s performance did not drop if only the 9 most informative
features were available. These characteristics make the Admission model an
appealing option, representing the first step to ML-assisted medicine in sev-
eral ICUs where laboratory tests might be difficult to obtain or have a high
cost. From a practical perspective, this model can be applied to generate a
broad overview of the patients until more information from laboratory tests
becomes available, and the Full model can be applied for a more accurate
prognosis.

We would like to note that there is some degree of tolerance for missing
values in the admission features. However, we emphasize the importance of
the availability of information regarding clinical history and demographics.
Importantly, we demonstrated that the good performance obtained by both
proposed models was not driven by the missing values presented in the data,
as the baseline performance obtained using only missing value information
was close to chance.

The patient-level predictions of the models were able to be explained
using the shap library. This is an important characteristic of the proposed
models, providing not only calibrated and accurate predictions, but also the
importance of each feature in the model’s output.

The fully functional Web Service will facilitate prospective users in load-
ing their data and generating predictions utilizing any of the developed mod-
els. The automatic checks and easy data entry will mitigate the burden of
the number of features used by the proposed models. Furthermore, if the
most important variables are loaded in the model, the user can discard the
other variables and obtain the same classification performance, speeding up
the process. The integration of the patient-level explanation plots provides
a fast and broad characterization of each patient.

Regarding the limitations of the present work, several can be acknowl-
edged. First, even when one of the main strengths of our study is the use of a
high-quality dataset derived from a large prospective multicenter study, other
larger cohorts could be used to train ML models. The decision to use the
CULPRIT-SHOCK dataset as a development cohort was based on its high
signal-to-noise ratio and relatively low number of missing values, compared
with other available datasets. Another limitation is that our model has been
mainly tested on CS patients after AMI and validated on a relatively small
cohort with broader CS etiology. Further validation needs to be addressed
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to systematically validate the performance in other larger shock populations.
Additionally, not all possible variables known as potential outcome predic-
tors in CS, such as central venous oxygen saturation, have been included in
the risk factor analyses. Furthermore, even though developed and tested in
a patient cohort from an originally prospective study, our models have not
been validated prospectively in CS patients, which remains challenging in the
acute setting of critically ill patients. This leads to the general ethical limita-
tion in relying on ML-derived prognoses in medical bedside decision-making,
possibly running the risk of retraining treatment for several patient groups.
Nevertheless, we suggest here a quick and easy-to-use risk stratification tool,
which can be combined with further clinical parameters.

In future works, we aim to generate a more compact model that can
deal with missing values without significantly decreasing performance. Fur-
thermore, MLL models that take other real-world scenarios into account are
desirable. For instance, features often come in “batches” after different med-
ical procedures and laboratory tests. If it is not possible to perform an ECG
on the patient, the derived features (sinus rhythm, atrial fibrillation, and
ST-segmentation elevation) will not be available altogether.

In conclusion, we developed and validated two ML models that can be
broadly applied in a wide range of ICUs and are available via our Web Ser-
vice. These models provide calibrated uncertainty estimates, can deal with
missing values, and generate patient-level explanations. This study may be
an important contribution toward ML-assisted decision-making in a clinical
setting.

5. Data availability

For the CULPRIT-SHOCK, no personally identifiable information was
used and individual participant data are not available for sharing. For the
eIlCU dataset, data is publicly available at https://physionet.org/content/
eicu-crd/2.0/ after registration.

6. Code availability

All codes were written in Python. Data processing and handling were
made using the Python libraries Pandas® (version 1.4.4) and Numpy*°
(version 1.23.3). We used the implementation of XGBoost available at
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https://github.com/dmlc/xgboost (version 2.0.2). For all the score mod-
els, we used the “LogisticRegression” class implemented in sklearn,*! version
1.1.2. The scores calculation was made using the libraries sklearn, imblearn
(version 0.10.1%?), and scipy (version 1.9.1%). Shap analysis was performed
using SHAP 0.45.1,°23! and plots were generated using Matplotlib** 3.6.0
and Seaborn®® 0.12.0 .

The Python environment and all the codes used to perform the experi-
ments and generate the plots in this paper are publicly available at: https:
//github.com/double-blind-submission-AIM/MACRO _EXPERIMENTS.

Furthermore, to provide final-user models, one Admission and one Full
model were trained using the best hyperparameter range (Range 2) and using
100 OPTUNA trials to obtain the best set of hyperparameters. The final-
user Admission model was trained on the entire dataset, while the final-user
Full model was trained on the dataset excluding the patients that expired in
the first 24 hours. Both models are publicly available in the same repository.
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Model bACC (%) AUC F1 Specificity Sensitivity
Admission | 64.6 0.715 0.618 0.687 0.605
model 53.1/76.1] 0.598/0.832] | [0.483/0.753] | [0.53/0.844] | [0.432/0.778]
Full model | 70.7 0.799 0.633 0.817 0.597
[59.2/82.2] 0.69/0.908] | [0.472/0.794] | [0.704/0.93] | [0.395/0.799]
SAPS II 59.7 0.677 0.423 0.858 0.336
[49.0/70.4] 0.536/0.818] | [0.219/0.627] | [0.733/0.983] | [0.13/0.542]
CLIP 66.3 0.794 0.534 0.898 0.429
[55.2/77.4] 0.653/0.935] | [0.334/0.734] | [0.791/1.005] | [0.213/0.645]
CardShock | 56.7 0.694 0.341 - [0.807 0.328 B
37.3/76.1] 0.418/0.97] | 0.115/0.797] | [0.454/1.16] | 0.196,/0.852]
IABP- 50 [50/50] 0.479 0 [0/0] 1 [1/1] 0 [0/0]
SHOCK II 0.277/0.681]
Admission | 50.6 0.508 0.064 [- | 0.977 0.036 -
model MV | [46.6/54.6] 0.443/0.573] | 0.075/0.203] | [0.917/1.037] | 0.045/0.117]
Baseline
Full model | 52.7 [44.4/61] | 0.541 0.251 0.875 0.18 -
MV Base- 0.416/0.666] | [0.025/0.477] | [0.732/1.018] | 0.007/0.367]
line
Table 1: Averaged results obtained on the cohort original CULPRIT-SHOCK
dataset from the 10 folds x 10 repetitions. The mean and 95% confidence intervals
(CI) are presented for each metric and each model. Abbreviation: MV=Missing Values
Model bACC (%) AUC F1 Specificity Sensitivity
Admission model | 62.24 0.683 0.556 0.593 0.593
Full model 70.7 0.777 0.493 0.886 0.385
BOS,MA, 58.4 0.82 0.324 0.96 0.203

Table 2: Results obtained on the eICU validation dataset.
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Figure 1: Overall Workflow for each split. The following workflow was used for both the
Admission and the Full model. The entire dataset was split 100 times into Train and Test
using a stratified 10-fold x 10 repetitions cross-validation. For each train partition, 100
combinations of hyperparameters were sampled using OPTUNA. For each combination,
the best number of trees was tuned using a stratified 3-fold inner cross-validation. Once
the hyperparameter combination that maximizes the performance over the validation split
was obtained, a model was trained using the selected parameters over the entire training
data. That model was then used to generate a prediction over the test data, which will
later be compared with the true labels to create the performance metrics.
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Figure 2: Performance measurements. a) Average receiver operating characteristic curve.
The True Positive Rate and False Positive Rate were computed and averaged for each
fold and repetition. This was repeated for each model. The Admission model performs
comparably to the SAPS II model, but it was able to deliver the prediction without
requiring any laboratory data. The Full model obtained a similar performance to the
CLIP model. b) Random Permutation experiment. The balanced accuracy (bACC) for
the True and Randomized labels is depicted. For the Randomized labels, 10 different
randomizations were performed for each of the 10 folds (no repetitions used). Each point
represents the bACC obtained for each randomization in each fold. The blue distributions
are obtained in the 10-fold 10 repetitions using the True labels. c-d) Calibration plots. For
each model, the relationship between increasing the model output (probability) and the
fraction of positive cases is depicted. For creating each curve, we used the test predictions
obtained in the 10 folds of each repetition and compared them with the true labels. Both
models presented a good calibration curve, allowing the user to interpret the model output
as probabilities. The model shows a good calibration, which can then be approximately
considered as the probability of one patient to “Expire”. This is an important characteristic
of the machine learning model, mainly in medical domains. Shade areas account for one
standard deviation. 29
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Figure 3: Impact of missing values on the developed models. Features values were replaced
with missing values in three different scenarios. In the worst-case scenario, the features
were removed from the model following the importance order obtained in the Feature Im-
portance analysis. In the best-case scenario, the features were removed in the inverse of
the worst-case scenario. An intermediate scenario, where the features were removed ran-
domly, is also depicted. a) Admission model analysis. The 17 admission features besides
sex and age, were removed following the different scenarios. For the best-case scenario,
the model is able to maintain its performance until 8 features are missing. Compared
with the Full model, in the random scenario, the drop in performance is faster. b) Full
model analysis. The 15 features obtained in the first 24 hours were removed following the
described scenarios. In this case, the model always has the 20 admission features available
for generating the output. In the best-case scenario, the model can maintain its perfor-
mance even when 10 features are missing.
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Figure 4: Shapley values for the admission features. To endorse the interpretability of our
models, we perform the Shapley values analysis to assess the relative feature importance.
a-c) Mean absolute of the SHAP values for the Admission (a) and 24 hours (c) features.
b-d) Impact of the feature values on the SHAP value for the admission (b) and 24 hours
(d) features. For each feature, each point represents a patient in the dataset. When the
model output is positive, the model predicts the patient’s prognosis as Expired. The red
color is related to high values in the corresponding features, while blue represents lower
values. Missing values are depicted in gray dots. Taking Age as an example, when the

value of the feature increases (older patients), the feature pushes the model to predict an
Expired patient. 31
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Figure 5: Patient-level explainability. The top f(x) value represents the final model output.
Output greater than 0 indicates that the model output was “Expired”, as that class was
used as a positive class. On the Y axis, each feature with its corresponding value for a
patient is presented. On the X axis, the contribution of the feature value to the model
output is presented. Negative values, presented in blue, push the model decision to predict
“Alive” patients, while the positive values, presented in red, push the model to predict
“Expired” patients. a) The waterfall plot from one Alive is depicted. In this case, the
Admission model correctly classified the patient as Alive. The most important feature for
the output is the Age of 41. The rest of the features have a small or no impact on the
model’s decision. b) Waterfall plot from an Expired patient whom the Admission model
was successfully able to classify. In this case, age does not play an important role in the
model’s decision. Heart rate, dyslipidemia, and diastolic pressure are the main factors
that push the model’s decision to predict “Expired". In this case, the height pushes the
model decision in the “Alive” direction.
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